複素数は実在するか その3

ここのところ寒暖の差が大きい日が続いております。
真夏のような暑さかと思えば昨日おとといは半袖で過ごすには涼しすぎる陽気でした。
風邪など引かれないよう充分ご注意ください。

さて、表題について前回までの内容を結論だけでまとめると、
「複素数」はおろか「負の数」は実在する物理量ではなく、計算の利便性などから由来する代数学上の概念である。
補足するならば、いわゆる複素数などは計算規則のみ定義されただけのただの「記号的表現」に過ぎず、この定義に反しない限り、私たちが現実の世界でそれにどのような意味を与えても良い…と悪し様に言えば割り切ってしまったわけです。

特に複素数は\(x\)の2次方程式
\(x^2+x+1=0\)
を解の公式に従って解けば
\(x=\frac{-1\pm\sqrt{-3}}{2}\)
と簡単に出現してしまうので、数学として扱えるようになることは大いに意味がありました。

そんな記号的表現を用いて表された概念ですが、次の4つの定義と、それぞれの演算に対して交換法則・結合法則を満たしているかどうかで数学においての扱いやすさが変わります。
複素数の例と合わせて見ていきましょう。
1.相等
\(a+bi=c+di\)であるとは\(a=c\)かつ\(b=d\)である事を意味する。
2.和・差
\((a+bi)\pm(c+di)\)とは\((a+c)\pm(c+d)i\)を作る事を意味する。
3.積
\((a+bi)(c+di)\)とは\((ac-bd)+(ad+bc)i\)を作る事を意味する。
4.商
\(\frac{a+bi}{c+di}\)とは\(\frac{ac+bd}{c^2-d^2}+\frac{bc-ad}{c^2-d^2}i\)を作る事を意味する。ただし\(c^2+d^2\neq0\)
つまるところ四則演算がいかなる場合でも行えるかどうかがポイントです。

大雑把になりますが、1.は前提として、各種演算についてこれらのうちのいくつを満たしているか、結合法則・交換法則を満たしているかで「群」「環」などと呼ばれ、数学において重要な地位を確立出来るわけです。
ちなみに複素数は4つ全てに対して結合法則・交換法則等を満たしていますので「体」に属しています。

「体」である場合、今まで学んできた代数学的な性質や変形の大部分が利用できます。
未知の数値・変数を\(x,y,\ldots\)と置き換えて数式変形は十分に問題なく行えるようになります。
複素数の場合、\(a+bi=z\)と実部・虚部丸ごと1つの文字で表現する事も認められます。
そうなると数式展開や因数分解が出来るだけでもかなり便利ですね。
逆に\(z=a+bi\)に従って実部と虚部に分けて考える事も出来てしまうので複雑になる事もあるのですが・・・

学園前教室 青木

定期テストの結果はいかがでしたか?

こんにちは。奈良・高の原教室の飯尾です。

最近は良い天気が続いて初夏の爽やかな気候ですが、
この週末は真夏並みに気温が上昇する様ですので、
お身体には十分お気を付けくださいね。
学生の皆さんは定期テストが一段落したところが多いと思われますが、
結果はいかがでしたでしょうか?

思うような結果が出なかった方は、今回の結果を踏まえ、
次回、すぐやって来る期末テストに向けて早急に対策をとらねばなりません。
当教室では皆さんの頑張りやご希望にお応え出来る様、
お受け入れの準備を整えています。

ぜひお気軽にお問い合わせ下さい。

中間テストのポイント

5月16日(木)に沖縄が梅雨入りしたようですが、関西は一雨降った後、すっかり初夏を思わせるというか、完全に夏?なのではと勘違いしてしまうような気候ですね。

一部を除き中間テスト期間に突入したのではないでしょうか?

今回は高校受験を控える公立中学生の数学のこの中間テストのポイントをおさらいします。

中1・・・前回のブログでも書いたように5教科満点を目指してほしいところです。狙えます。
     理解度の部分では、「自然数」の正確な理解と「絶対値の範囲」に気を付けて下さい。
     計算では何と言っても「負の数」の扱い。「負の数」の四則演算はミスが起きやすので
         今一度チェック!

中2・・・中1で文字を使いいろんな計算をしてきましたが、中2では「式を自由に扱える(式の変形)」
     技術が求められます。「単項式×単項式」、「単項式×多項式」の計算をしっかりと練習しま
     しょう。
     ここでも(かっこ)の前にマイナスがついたときの展開にはミスが起りやすいので要チェックで
     す。

中3・・・中3では、「多項式×多項式」の乗法公式や因数分解といった少し高校数学の準備内容が
          入ります。
     高度なことは高校でもう一度習いますが、基本的な乗法公式4つと因数分解、繰り返し練習
           してくださいね。

どの学年もこの中間テストでは、1年間を通して勉強する上で必要な計算の分野が中心になると思います。簡単だと侮ることなく、繰り返し練習(勉強)してください。この計算がおぼつかないままだと、この後に学習する内容にどんどんついていけなくなります。
繰り返しますが、計算だと侮らず、面倒くさがらず、取り組んでください。

では、みなさんが良い結果が出せるように願っています。

上本町教室 中土井

複素数は実在するか その2

前回下手くそに話を切ってしまいましたがともかく続きです。

最後の質問について「負の数は実在するだろう」という意見があったり、あるいは星の数ほどいるであろう私より学のある方々から複素数の実在例が上がったりするかもしれません。
しかし、少なくとも歴史的な経緯からすれば、負の数だったり複素数というのは実在する物理的な数量ではないのです。

詳しい説明に入る前に、まずは「負の数が実在する」という意見に対する反証から入りましょう。うまく伝えられるか不安ですが・・・
実在する負の数としてよく思い浮かぶ例としては「陽子」と「電子」でしょうか。
確かに「陽子」は正の電荷を持つ一方で、「電子」は負の電荷を持つ粒子として自然科学では広く扱われていますし、そこに一石を投じるような度胸もおこがましさも私にはありません。
ただし、ある電気的な性質を持つ「陽子」及びそれと真逆の性質を持つ「電子」に対して、一方を正の電荷を持つ粒子、他方を負の電荷を持つ粒子と定めたのは科学的・数学的な利便さから来た後付けの解釈なのです。
こう定めた時に数学的・物理的に運動の様子などが論理的に説明が出来るようになった(もしくはしやすくなった)ので、これを踏襲しているといったところです。

正の数・負の数というのは元々ある基準に対する変化を表す変化量であって物理量ではありません。
例えば水が氷になる瞬間の温度を0℃として10度高い温度を(+)10℃、10度低い温度を-10℃として表現している訳です。
あまり頭のいい表現ではありませんが、「1個のりんご」は存在しても「-1個のりんご」は存在しません。あくまでりんごが1個増えることを+1個と表現した時、1個減ることを-1個と表現することしか出来ません。

兎にも角にも負の数や、ましてや複素数なる物理的な数量は存在せず、「あったほうが便利だから」という理由から現代数学において地位を得ているのです。
負の数はともかく複素数は果たして便利なのかというと、悲しいことに高校生で理系を専攻しないと実感出来ないかもしれません。
オイラーの公式まで話が出来るならば重要性がわかりやすい形で見えてくるのですが・・・これは大学生になってからの話です。

まぁそんなこんなで、実は負の数を扱い始めた中学1年生の段階で、実在する数だけを取り扱う「算数」から卒業していた訳ですね。


学園前教室 青木

複素数は実在するか その1

ご無沙汰しております。
GWだったり法事だったり上からの雑務だったりで色々忙殺されておりまして更新が出来ませんでした。
授業自体はなんとか滞りなく行えたのが不幸中の幸いでして・・・

挨拶はそこそこに表題についてのお話。
標準のカリキュラムによれば高校2年生の方、学校によっては高校1年生ないしは中学3年生の方ですでにひとまず習ったという前提で話をしてしまいます。
複素数(Complex Number)の名が示す通り複雑で難解な代数における概念です。
虚数単位iを単なる文字のように見なすと割り切れるかどうかがまず1つの関門です。
苦手だったり毛嫌いする人の中には、
平方すると−1となる数なんて存在しないし、実在しない数について考える意味はない!
・・・なんて考えている方も少なくはないでしょう。
その意見は尤もですし、ある意味鋭い質問です。
ただし、この疑問を持つのは3年ないしは5年ほど遅かったと言わねばなりません。
逆にお尋ねしますが、負の数は実在するのでしょうか?

色々言いたい事はあるでしょうが、次回に続くという事で(笑)
中間テストが目前の方、真っ最中の方は頑張っていい結果を残しましょう!

学園前教室 青木

1学期中間(定期)テストに向けて。

長い長いG.Wが終わり、梅雨を通り越して夏到来を思わせる暑さですね。余りに長いG.Wですっかり休みボケになっているところにこの暑さですから、体調を崩されているみなさんも多いのでは無いでしょうか?

 

さて5月も半ばにさしかかり、そろそろ中間(定期)テストまで数日~1週間といったところではないかと思います。新しい年度になって最初の定期テスト。対策は万全でしょうか?

特に中1のみなさんには5教科オール満点を是非目指していただきたいところですね。

その他の学年のみなさんも、数学は基本的(とくに計算中心)な内容になると思われますから、イージーミスや取りこぼしを絶対にしないようにしないといけませんね。

簡単な問題でも決して侮ることなく取り組みましょう。「わかった」と「できる」には天と地ほどの差があります。「わかった・理解した問題」はそこで留めずに必ず「できる問題」に昇華させてましょう。一度間違った問題は少なくとも3回は解きなおすことが大事です。

これらのことは石川数学塾大阪の塾生にはごくごく当たり前の話。試験の前になって慌てるのでなく、日頃から問題に取り組むときのちょっとした工夫・ルーティンワークが試験の時になって活きてきます。

1学期中間(定期)テストまではわずかですが、専門塾ならではのノウハウを体験しに来ませんか?

いずれの教室でも無料の体験授業を受け付けていますので、お気軽にお問合せください。

上本町教室 中土井

【高の原教室】自習室開放のお知らせ

奈良・高の原教室の飯尾です。

大型連休も先週で終了し、学生の皆さんは、

定期テストが目前に迫ってきているのではないでしょうか?
そこで、当高の原教室では、

勉強するヤル気のある方に

無料で自習室を開放しております。
基本的に、授業の有る曜日・時間帯でご参加可能です。

熱意のある方、大いに歓迎いたします!!

【高の原教室】お休みのお知らせ

誠に勝手ながら、年間休日スケジュールに則り、

4月29日(月)~5月4日(土)の授業は休みとさせていただきます。

休み中はお電話の対応、メールのお返事、質問のご返答等ができません。

休み明けの5月6日(月)から順次対応させて頂きますので、

何卒ご了承くださいませ。

GW中のインフルエンザに注意!

もうすぐGW含め10連休に突入しようかといったところですが、ここに来て何故か首都圏でインフルエンザが流行りだしているそうで・・・
原因は特にわかっていないようなのですが、ここ1週間で急に患者が増えたようで。
国立感染症研究所のHPにて流行レベルマップが掲載されていますので旅行の際などにチェックしておきたいですね。
注意しても罹ってしまうときは罹ってしまうので仕方ない部分はあるんですが・・・

それはそうと、当塾もGW中4月29日〜5月4日(来週月〜土曜日)はお休みとなってしまいますのでご注意ください。
お電話もつながりません。メールであればもしかしたら反応できるかもしれません。
申し訳ございませんがよろしくお願いいたします。

学園前教室 青木

計算できなきゃ何も始まりません

新学期・新学年になり本格的に授業が始まりましたがいかがでしょうか?
負の数だったり多項式だったり数式展開・因数分解だったりと、どの学年であれ新しい要素を取り入れた計算に四苦八苦している方も多いと思います。
ですがここは我慢の時であります。九九と同じようなもので、出来なければスタートラインにすら立てません。
おまけに物理なり化学なり他の理系科目でも容赦なく数学の要素を取り入れた計算を使いますので尚更です。

速さよりも正確さが大事ですので、計算ミスがないように・・・というよりはミスに気づけるように気をつけねばなりません。つまり検算が今まで以上に重要になります。
検算のコツなんかは個別にあったりなかったりしますが、とりわけ式の展開・因数分解は検算の仕方もわかりやすく、計算力も自然とついてきますので大切に。
個人的には1日100題やるぐらいの勢いがあれば理想ですが・・・あくまで個人的にはです(笑)

学園前教室 青木